HDG for Strokess implementation

Sonia FERNÁNDEZ-MÉNDEZ
LaCàN, Universitat Politècnica de Catalunya
(UPC-BarcelonaTech)

July 2017

1. Why HDG for incompressible flow?

- Brief introduction
- Comparison with CG
(Results from the PhD thesis of Mahendra Paipuri IST-UPC)

2. HDG formulation for Stokes

- Derivation of the weak form
- Discretization, linear system

- Matlab implementation

$$
\begin{aligned}
& \quad+\left\langle\delta \boldsymbol{u},\left(\hat{\boldsymbol{u}}_{h} \otimes \hat{\boldsymbol{u}}_{h}\right) \boldsymbol{n}+\tau\left(\boldsymbol{u}_{h}-\hat{\boldsymbol{u}}_{h}\right)\right\rangle_{\partial \Omega_{e}}-(\delta \boldsymbol{u}, \boldsymbol{f})_{\Omega_{e}}=0 \\
& -\left(\operatorname{grad} \delta p, \boldsymbol{u}_{h}\right)_{\Omega_{e}}+\left\langle\delta p, \hat{\boldsymbol{u}}_{h} \cdot \boldsymbol{n}\right\rangle_{\partial \Omega_{e}}=0, \\
& \frac{1}{\partial \Omega_{e} \mid}\left\langle p_{h}, 1\right\rangle_{\partial \Omega_{e}}=\rho_{e},
\end{aligned}
$$

[Cockburn, Nguyen \& Peraire, JSC 2010]

$$
\begin{aligned}
-\boldsymbol{\nabla} \cdot(\nu \boldsymbol{\nabla} \boldsymbol{u})+\boldsymbol{\nabla} p=\boldsymbol{f} & \text { in } \Omega \\
\boldsymbol{\nabla} \cdot \boldsymbol{u}=\mathbf{0} & \text { in } \Omega \\
\boldsymbol{u}=\boldsymbol{u}_{D} & \text { on } \partial \Omega
\end{aligned}
$$

- Local problems:

$$
\begin{aligned}
& \boldsymbol{L}-\boldsymbol{\nabla} \boldsymbol{u}=\mathbf{0}, \quad \boldsymbol{\nabla} \cdot(-\nu \boldsymbol{L}+p \mathbf{I})=\boldsymbol{f} \text { and } \boldsymbol{\nabla} \cdot \boldsymbol{u}=\mathbf{0} \text { in } K_{i} \\
& \boldsymbol{u}=\widehat{(u)} \text { on } \partial K_{i} \\
& \begin{array}{c}
\text { Dirichlet problem in each } \\
\text { element } \mathrm{K}_{\mathrm{i}} \text { with data û and } \rho_{\mathrm{i}}
\end{array} \quad \frac{1}{\left|K_{i}\right|} \int_{K_{i}} p d V=\bigodot_{i}
\end{aligned}
$$

- Global equations: conservativity, well-posedness and BC

$$
\begin{gathered}
\llbracket(-\nu \boldsymbol{L}+p \mathbf{I}) \cdot \boldsymbol{n} \rrbracket=0 \quad \text { on } \Gamma \backslash \partial \Omega \iint_{\partial K_{i}} \hat{\boldsymbol{u}} \cdot \boldsymbol{n} d S=0 \quad \text { for } i=1, \ldots, \mathrm{n}_{\mathrm{e} 1} \\
\hat{\boldsymbol{u}}=\boldsymbol{u}_{D} \text { on } \partial \Omega \text { and } \sum_{i=1}^{\mathrm{ne}_{\mathrm{e}}}\left|K_{i}\right| \rho_{i}=|\Omega| \rho_{\Omega}
\end{gathered}
$$

$$
\begin{aligned}
-\boldsymbol{\nabla} \cdot(\nu \boldsymbol{\nabla} \boldsymbol{u})+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{u} & =\mathbf{0}
\end{aligned}
$$

1. Global problem: involves only

- \hat{u} : velocity trace

2. Element-by-element postprocess (local problem)

$$
\hat{\boldsymbol{u}} \rho^{K} \rightarrow \boldsymbol{u}^{K} p^{K}
$$

- Same hypotheses as [Huerta, Angeloski, Roca and Peraire, IJNME 2013] for number of geometrical entities in terms of number of elements
- HDG with degree k, CG with Taylor-Hood k-(k-1)

But... different convergence rates... :-/

DG summer shool 20177

- HDG with degree k-1, CG with Taylor-Hood k-(k-1)

- But... which one is more efficient in terms of CPU time and accuracy?

(a) $h=0.03125$.

(b) $h=0.25$.

Kowasznay flow: ratio of Cpl time for linear solver V.s. velocily error

" HDG solution of the Navier-Stokes equations ($\mathrm{Re}=2000, \mathrm{k}=3$)

- HDG solution, Navier-Stokes equations ($\mathrm{Re}=11100, \mathrm{k}=3$)

HDG Navier-Stoke		CG Oseen No convergence for NS Degree
	$k=3$	$k=5$
CG	$R e=1870$	$R e=8300$
	$\tau=1, R e=2250$	$\tau=1, R e=2450$
HDG	$\tau=100, R e=8000$	$\tau=100, R e=9100$
	$\tau=500, R e=11100$	$\tau=500, R e=15400$

- HDG has similar (or better) computational efficiency compared to CG, outperforming other DG methods:
- \#DOF slightly larger than CG for Laplace
- more DOF for velocity and less for pressure for incompressible flow and

- superconvergence, better accuracy
- nice block structure of matrices, convenient for direct solvers
- HDG inherits DG stability properties in the presence of sharp fronts.

1. Why HDG for incompressible flow?

- Brief introduction
- Comparison with CG

2. HDG formulation for Stokes

- Derivation of the weak form
- Discretization, linear system
- Matlab implementation

$$
0 \text { On } \begin{aligned}
& \left(\delta \boldsymbol{L}, \boldsymbol{L}_{h}\right)_{\Omega_{e}}+\left(\operatorname{div} \delta \boldsymbol{L}, \boldsymbol{u}_{h}\right)_{\Omega_{e}}-\left\langle\delta \boldsymbol{L} \boldsymbol{n}, \hat{\boldsymbol{u}}_{h}\right\rangle_{\partial \Omega_{e}}=0, \\
& -\left(\operatorname{grad} \delta \boldsymbol{u}, \boldsymbol{u}_{h} \otimes \boldsymbol{u}_{h}\right)_{\Omega_{e}}+\left(\delta \boldsymbol{u}, \operatorname{div}\left(-\nu \boldsymbol{L}_{h}+p_{h} \boldsymbol{I}\right)\right)_{\Omega_{e}} \\
& \\
& \quad+\left\langle\delta \boldsymbol{u},\left(\hat{\boldsymbol{u}}_{h} \otimes \hat{\boldsymbol{u}}_{h}\right) \boldsymbol{n}+\tau\left(\boldsymbol{u}_{h}-\hat{\boldsymbol{u}}_{h}\right)\right\rangle_{\partial \Omega_{e}}-(\delta \boldsymbol{u}, \boldsymbol{f})_{\Omega_{e}}=0 \\
& -\left(\operatorname{grad} \delta p, \boldsymbol{u}_{h}\right)_{\Omega_{e}}+\left\langle\delta p, \hat{\boldsymbol{u}}_{h} \cdot \boldsymbol{n}\right\rangle_{\partial \Omega_{e}}=0,
\end{aligned}
$$

[Cockburn, Nguyen \& Peraire, JSC 2010]

$$
\begin{aligned}
-\boldsymbol{\nabla} \cdot(\nu \boldsymbol{\nabla} \boldsymbol{u})+\boldsymbol{\nabla} p=\boldsymbol{f} & \text { in } \Omega \\
\boldsymbol{\nabla} \cdot \boldsymbol{u}=\mathbf{0} & \text { in } \Omega \\
\boldsymbol{u}=\boldsymbol{u}_{D} & \text { on } \partial \Omega
\end{aligned}
$$

- Local problems:

$$
\begin{aligned}
& \boldsymbol{L}-\boldsymbol{\nabla} \boldsymbol{u}=\mathbf{0}, \quad \boldsymbol{\nabla} \cdot(-\nu \boldsymbol{L}+p \mathbf{I})=\boldsymbol{f} \text { and } \boldsymbol{\nabla} \cdot \boldsymbol{u}=\mathbf{0} \text { in } K_{i} \\
& \boldsymbol{u}=\widehat{(u)} \text { on } \partial K_{i} \\
& \begin{array}{c}
\text { Dirichlet problem in each } \\
\text { element } \mathrm{K}_{\mathrm{i}} \text { with data û and } \rho_{\mathrm{i}}
\end{array} \quad \frac{1}{\left|K_{i}\right|} \int_{K_{i}} p d V=\bigodot_{i}
\end{aligned}
$$

- Global equations: conservativity, well-posedness and BC

$$
\begin{gathered}
\llbracket(-\nu \boldsymbol{L}+p \mathbf{I}) \cdot \boldsymbol{n} \rrbracket=0 \quad \text { on } \Gamma \backslash \partial \Omega \iint_{\partial K_{i}} \hat{\boldsymbol{u}} \cdot \boldsymbol{n} d S=0 \quad \text { for } i=1, \ldots, \mathrm{n}_{\mathrm{e} 1} \\
\hat{\boldsymbol{u}}=\boldsymbol{u}_{D} \text { on } \partial \Omega \text { and } \sum_{i=1}^{\mathrm{ne}_{\mathrm{e}}}\left|K_{i}\right| \rho_{i}=|\Omega| \rho_{\Omega}
\end{gathered}
$$

- Dirichlet problem in each element

$$
\begin{aligned}
\boldsymbol{L}-\boldsymbol{\nabla} \boldsymbol{u}=\mathbf{0}, \quad \boldsymbol{\nabla} \cdot(-\nu \boldsymbol{L}+p \mathbf{I})=\boldsymbol{f} \text { and } \boldsymbol{\nabla} \cdot \boldsymbol{u} & =\mathbf{0} & \text { in } K_{i} \\
\boldsymbol{u} & =\hat{\boldsymbol{u}} & \text { on } \partial K_{i}
\end{aligned}
$$

- Weak form: given û and $\rho_{\mathrm{i}}, \quad \overline{\left|K_{i}\right|} \int_{K_{i}} p d V=\rho_{i}$ find u, L and p such that
$\int_{K_{i}}\left(-\boldsymbol{\nabla} \cdot\left(\nu \boldsymbol{L}_{h}\right)+\boldsymbol{\nabla} p_{h}\right) \cdot \boldsymbol{v} d V+\int_{\partial K_{i}} \tau \nu\left(\boldsymbol{u}_{h}-\hat{\boldsymbol{u}}_{h}\right) \cdot \boldsymbol{v} d S=\int_{K_{i}} \boldsymbol{f} \cdot \boldsymbol{v} d V$

$$
\int_{K_{i}} \boldsymbol{L}_{h}: \boldsymbol{Q} d V+\int_{K_{i}}(\boldsymbol{\nabla} \cdot \boldsymbol{Q}) \cdot \boldsymbol{u}_{h} d V-\int_{\partial K_{i}}(\boldsymbol{Q} \cdot \boldsymbol{n}) \cdot \hat{\boldsymbol{u}}_{h} d S=0
$$

$$
\int_{K_{i}} \boldsymbol{u}_{\boldsymbol{h}} \cdot \nabla q d V-\int_{\partial K_{i}}\left(\hat{\boldsymbol{u}}_{h} \cdot \boldsymbol{n}\right) q d S=0
$$

for all v, Q and q $\quad \frac{1}{\left|K_{i}\right|} \int_{\partial K_{i}} p_{h} d V=\rho_{i}, \quad \widehat{\boldsymbol{L}}:=\boldsymbol{L}+\tau(\hat{\boldsymbol{u}}-\boldsymbol{u}) \otimes \boldsymbol{n}$

- Linear system in each element with a Lagrange multiplier λ
- Local solver

$$
\left.\left[\begin{array}{c}
\mathbf{u}^{i} \\
\mathbf{L}^{i} \\
\mathbf{p}^{i} \\
\lambda
\end{array}\right]=[\text { localSolverMat }]\left[\begin{array}{c}
\widehat{\mathbf{u}}^{\mathbf{F}_{i n}} \\
\vdots \\
\widehat{\mathbf{w}}^{i n} \\
\rho_{i}
\end{array}\right]+\text { [localSolverVec }\right]
$$

$\# 1 \llbracket(-\nu \boldsymbol{L}+p \mathbf{I}) \cdot \boldsymbol{n} \rrbracket=0 \quad$ on $\Gamma \backslash \partial \Omega$
\#2 $\int_{\partial K_{i}} \hat{\boldsymbol{u}} \cdot \boldsymbol{n} d S=0 \quad$ for $i=1, \ldots, \mathrm{n}_{\mathrm{el}}$
\#3 $\hat{\boldsymbol{u}}=\boldsymbol{u}_{D}$ on $\partial \Omega$ and $\sum_{i=1}^{\mathrm{n}_{\mathrm{e} 1}}\left|K_{i}\right| \rho_{i}=|\Omega| \rho_{\Omega}$

- Weak form equation \#1

$$
\llbracket \odot \rrbracket=\odot_{L(f)}+\odot_{R(f)}
$$

$$
\begin{gathered}
\int_{\Gamma} \widehat{\boldsymbol{v}} \cdot \llbracket\left(-\nu \boldsymbol{L}_{h}+p_{h} \mathbf{I}\right) \cdot \boldsymbol{n} \rrbracket d S \quad\{\odot\}=\frac{1}{2}\left(\odot_{L(f)}+\odot_{R(f)}\right) \\
+2 \int_{\Gamma} \widehat{\boldsymbol{v}} \cdot\left(\left\{\nu \tau \boldsymbol{u}_{h}\right\}-\{\nu \tau\} \hat{\boldsymbol{u}}_{h}\right) d S=0
\end{gathered}
$$

or equivalent expression as sum in elements...

- Equation \#1 on each face f
$\mathbf{A}_{\widehat{u} u}^{f, L} \mathbf{u}^{L(f)}+\mathbf{A}_{\widehat{u} \boldsymbol{L}}^{f, L} \boldsymbol{L}^{L(f)}+\mathbf{A}_{\widehat{u} p}^{f, L} \mathbf{p}^{L(f)}$

$$
+\mathbf{A}_{\widehat{u} u}^{f, R} \mathbf{u}^{R(f)}+\mathbf{A}_{\widehat{u} \boldsymbol{L}}^{f, R} \boldsymbol{L}^{R(f)}+\mathbf{A}_{\widehat{u} p}^{f, R} \mathbf{p}^{R(f)}+\mathbf{A}_{\widehat{u} \widehat{u}}^{f} \widehat{\mathbf{u}}^{f}=0
$$

replacing the local solver... leads to an equation with only u^{i} for the 5 faces, and the mean of the pressure in the two elements, $\rho^{L(f)}$ and $\rho^{R(f)}$.

- Equation \#2
on each element i $\int_{\partial K_{i}}$

$$
\hat{\boldsymbol{u}}_{h} \cdot \boldsymbol{n} d S=0 \quad \text { for } i=1, \ldots, \mathrm{n}_{\mathrm{el}}
$$

$$
\mathbf{A}_{\rho \widehat{u}}\left[\begin{array}{c}
\widehat{\mathbf{u}}^{\mathbf{F}_{i 1}} \\
\vdots \\
\widehat{\mathbf{w}}_{i n}
\end{array}\right]=0 \quad \text { for } i=1, \ldots, \mathrm{n}_{\mathrm{el}}
$$

- Loop in elements K_{i}
- Computation of elemental matrices (volume integrals and face integrals): $A_{u u}, A_{l u}, \ldots$
- Computation of local solver: [localSolverMat] and [localSolverVec] such that

$$
\left[\begin{array}{c}
\mathbf{u}^{i} \\
\mathbf{L}^{i} \\
\mathbf{p}^{i} \\
\lambda
\end{array}\right]=\left[\text { localSolverMat }\left[\begin{array}{c}
\widehat{\mathbf{u}}^{\mathbf{F}_{i 1}} \\
\vdots \\
\widehat{\mathbf{u}}^{i n} \\
\rho_{i}
\end{array}\right]+\right.\text { [localSolverVec] }
$$

- Computation of elemental matrix and vector

$$
\begin{aligned}
& \mathbf{K}^{i}=\left[\begin{array}{ccc}
{\left[A_{\hat{u} u}\right.} & A_{\hat{u} L} & A_{\hat{u} p}
\end{array}\right]^{*}[\text { localSolverMat }]+\left[\begin{array}{c}
A_{\hat{u} \hat{u}}, \mathbf{0}
\end{array}\right] \\
& \mathbf{f}^{i}=\left[\begin{array}{c}
{\left[\mathrm{A}_{\hat{u} u} \mathrm{~A}_{\mathrm{uL}} \mathrm{~A}_{\hat{\mathrm{up}}}\right]^{\star}[\text { localSolverVec }]} \\
0
\end{array}\right] \begin{array}{c}
\text { and assembly in the } 3 \text { faces } \\
\text { (with flipping) }
\end{array}
\end{aligned}
$$

- Modification of the system to impose Dirichlet boundary conditions
- Solution of the system
- Computation of superconvergent velocity
- Postprocess

Remarks:

- L2 projection of the Dirichlet data, otherwise superconvergent solution with order only $\mathrm{h}^{\mathrm{k}+1.5}$
- The superconvergent solution can be computed as for Laplace or with a formulation that takes into account incompressibility

